Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3275, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332006

RESUMO

Spontaneous abortion is a pregnancy complication characterized by complex and multifactorial etiology. About 5% of childbearing women are globally affected by early pregnancy loss (EPL) and most of them experience recurrence (RPL). Epigenetic mechanisms and controlled inflammation are crucial for pregnancy maintenance and genetic predispositions may increase the risk affecting the maternal-fetal crosstalk. Combined analyses of global methylation, inflammation and inherited predispositions may contribute to define pregnancy loss etiopathogenesis. LINE-1 epigenetic regulation plays crucial roles during embryo implantation, and its hypomethylation has been associated with senescence and several complex diseases. By analysing a group of 230 women who have gone through pregnancy interruption and comparing those experiencing spontaneous EPL (n = 123; RPL, 54.5%) with a group of normal pregnant who underwent to voluntary interruption (VPI, n = 107), the single statistical analysis revealed significant lower (P < 0.00001) LINE-1 methylation and higher (P < 0.0001) mean cytokine levels (CKs: IL6, IL10, IL17A, IL23) in EPL. Genotyping of the following SNPs accounted for different EPL/RPL risk odds ratio: F13A1 rs5985 (OR = 0.24; 0.06-0.90); F13B rs6003 (OR = 0.23; 0.047-1.1); FGA rs6050 (OR = 0.58; 0.33-1.0); CRP rs2808635/rs876538 (OR = 0.15; 0.014-0.81); ABO rs657152 (OR = 0.48; 0.22-1.08); TP53 rs1042522 (OR = 0.54; 0.32-0.92); MTHFR rs1801133/rs1801131 (OR = 2.03; 1.2-3.47) and FGB rs1800790 (OR = 1.97; 1.01-3.87), although Bonferroni correction did not reach significant outputs. Principal Component Analysis (PCA) and logistic regression disclosed further SNPs positive/negative associations (e.g. APOE rs7412/rs429358; FGB rs1800790; CFH rs1061170) differently arranged and sorted in four significant PCs: PC1 (F13A, methylation, CKs); PC3 (CRP, MTHFR, age, methylation); PC4 (F13B, FGA, FGB, APOE, TP53, age, methylation); PC6 (F13A, CFH, ABO, MTHFR, TP53, age), yielding further statistical power to the association models. In detail, positive EPL risk association was with PC1 (OR = 1.81; 1.33-2.45; P < 0.0001) and negative associations with PC3 (OR = 0.489; 0.37-0.66; P < 0.0001); PC4 (OR = 0.72; 0.55-0.94; P = 0.018) and PC6 (OR = 0.61; 0.46-0.81; P = 0.001). Moreover, significant inverse associations were detected between methylation and CKs levels in the whole group (rIL10 = - 0.22; rIL17A = - 0.25; rIL23 = - 0.19; rIL6 = - 0.22), and methylation with age in the whole group, EPL and RPL subgroups (r2TOT = 0.147; r2EPL = 0.136; r2 RPL = 0.248), while VPI controls lost significance (r2VPI = 0.011). This study provides a valuable multilayer approach for investigating epigenetic abnormalities in pregnancy loss suggesting genetic-driven dysregulations and anomalous epigenetic mechanisms potentially mediated by LINE-1 hypomethylation. Women with unexplained EPL might benefit of such investigations, providing new insights for predicting the pregnancy outcome and for treating at risk women with novel targeted epidrugs.


Assuntos
Aborto Espontâneo , Epigênese Genética , Gravidez , Humanos , Feminino , Interleucina-10/genética , Interleucina-6/genética , Aborto Espontâneo/genética , Predisposição Genética para Doença , Metilação de DNA , Manutenção da Gravidez , Inflamação/genética , Apolipoproteínas E/genética
2.
Sci Rep ; 5: 7847, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25597401

RESUMO

Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 µm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell-substrate interactions, and may benefit the optimization of scaffold design for CNS healing.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Sinalização do Cálcio , Animais , Astrócitos/citologia , Técnicas de Cultura de Células , Células Cultivadas , Citoesqueleto/metabolismo , Exocitose , Adesões Focais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Lisossomos/fisiologia , Microscopia de Fluorescência , Mitocôndrias/fisiologia , Ratos , Ratos Sprague-Dawley , Imagem com Lapso de Tempo
3.
Curr Pharm Biotechnol ; 14(14): 1201-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24809717

RESUMO

The blood brain barrier (BBB) maintains homeostasis by regulating the transport of chemicals at the brain interface. However, it is also one of the largest obstacles for drug delivery to the central nervous system (CNS). The utilization of nanoparticles as drug delivery vehicles is one potential solution to overcome this barrier. This review highlights the characteristics of the BBB that inhibit the passage of drugs to the brain, evaluates the efficiency of current in vitro models to mimic the BBB, and discusses the use of nanoparticles in both in vivo and in vitro models to enhance drug permeability across the barrier. In addition, this review describes factors that influence the passage of nanoparticles (type of polymers and surfactant coating, nanoparticle size) across the barrier. Protein opsonization and phagocytic activity of the reticuloendothelial system limits the amount of drug delivered to the brain, and this article summarizes methods to circumvent these issues. This paper also reviews literature covering opportunities and challenges provided with current applications of nanoparticle drug delivery systems for diseases of the brain, including cancer, HIV, and Alzheimer's disease.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Animais , Técnicas de Cultura de Células , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos
4.
BMC Med Genet ; 13: 70, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22883388

RESUMO

BACKGROUND: Iron involvement/imbalance is strongly suspected in multiple sclerosis (MS) etiopathogenesis, but its role is quite debated. Iron deposits encircle the veins in brain MS lesions, increasing local metal concentrations in brain parenchyma as documented by magnetic resonance imaging and histochemical studies. Conversely, systemic iron overload is not always observed. We explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes in MS patients. METHODS: By the pyrosequencing technique, we investigated 414 MS cases [Relapsing-remitting (RR), n=273; Progressive, n=141, of which: Secondary (SP), n=103 and Primary (PP), n=38], and 414 matched healthy controls. Five SNPs in 4 genes were assessed: hemochromatosis (HFE: C282Y, H63D), ferroportin (FPN1: -8CG), hepcidin (HEPC: -582AG), and transferrin (TF: P570S). RESULTS: The FPN1-8GG genotype was overrepresented in the whole MS population (OR=4.38; 95%CI, 1.89-10.1; P<0.0001) and a similar risk was found among patients with progressive forms. Conversely, the HEPC -582GG genotype was overrepresented only in progressive forms (OR=2.53; 95%CI, 1.34-4.78; P=0.006) so that SP and PP versus RR yielded significant outputs (P=0.009). For almost all SNPs, MS disability score (EDSS), severity score (MSSS), as well as progression index (PI) showed a significant increase when comparing homozygotes versus individuals carrying other genotypes: HEPC -582GG (EDSS, 4.24±2.87 vs 2.78±2.1; P=0.003; MSSS, 5.6±3.06 vs 3.79±2.6; P=0.001); FPN1-8GG (PI, 1.11±2.01 vs 0.6±1.31; P=0.01; MSSS, 5.08±2.98 vs 3.85±2.8; P=0.01); HFE 63DD (PI, 1.63±2.6 vs 0.6±0.86; P=0.009). Finally, HEPC -582G-carriers had a significantly higher chance to switch into the progressive form (HR=3.55; 1.83-6.84; log-rank P=0.00006). CONCLUSIONS: Polymorphisms in the genes coding for iron binding and transporting proteins, in the presence of local iron overload, might be responsible for suboptimal iron handling. This might account for the significant variability peculiar to MS phenotypes, particularly affecting MS risk and progression paving the way for personalized pharmacogenetic applications in the clinical practice.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Ligação ao Ferro/genética , Esclerose Múltipla/genética , Polimorfismo Genético , Adulto , Peptídeos Catiônicos Antimicrobianos/genética , Progressão da Doença , Feminino , Hemocromatose/genética , Proteína da Hemocromatose , Hepcidinas , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Transferrina
5.
Int J Low Extrem Wounds ; 9(4): 166-79, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21118859

RESUMO

The iron metallobiology has long been suspected as a causal agent in venous leg ulcer (VLU) pathophysiology. However, it was demonstrated only recently that visible iron deposits cause lesions in only some individuals due to functional iron and related gene variants. In this article, the mechanism by which dysregulated iron cycle leads to local iron overload that could generate free radicals or activate a proteolytic hyperactivity on the part of matrix metalloproteinases (MMPs) or else downregulate tissue inhibitors of MMPs is reviewed. Also reviewed is the interplay of other vital factors such as coagulation factor XIII (FXIII), which influences tissue remodeling and angiogenesis, leading to impaired healing of the lesion, whether there exists altered interaction with MMPs or in presence of particular unfavorable single nucleotide polymorphisms.


Assuntos
Fator XIII/metabolismo , Ferro/metabolismo , Metaloproteases/metabolismo , Úlcera Varicosa/genética , Anti-Infecciosos , Matriz Extracelular , Variação Genética , Regeneração Tecidual Guiada , Humanos , Inflamação/metabolismo , Sobrecarga de Ferro , Polimorfismo de Nucleotídeo Único , Prognóstico , Espécies Reativas de Oxigênio , Úlcera Varicosa/enzimologia , Úlcera Varicosa/patologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA